Academic Positions Nederland

Advanced Research Center for Nanolithography ARCNL

The Advanced Research Center for Nanolithography is a new type of public-private partnership between the University of Amsterdam, the VU University Amsterdam, the Foundation for Fundamental Research on Matter (FOM), which forms part of the Dutch research organization NWO, and ASML. It combines the best of both worlds: the academic focus on scientific excellence and ASML’s focus on a well-defined application area. Just like the other NWO institutes, ARCNL has strong ties with the universities. It has access to all academic grants and most of its research is performed by PhD students and postdoctoral fellows who are supervised by assistant (tenure-track), associate and full professors.

Momentous inventions are rooted in groundbreaking discoveries. That is why at ARCNL we venture into unknown territory, while at the same time looking towards industry for inspiration. EUV lithography is currently the most promising new technology for semiconductor production. We therefore mainly focus on the physics that is central to the generation of high intensities of extreme ultraviolet light and its use in nanolithography. We try to be the first to understand and control certain physical processes at the atomic scale and beyond. Over time our program will evolve so that we can remain at the frontier of nanolithography research.

ARCNL currently has nine research groups, each exploring its own field:

EUV Plasma Modeling

Which processes take place within an EUV emitting plasma? And how do they influence the amount of EUV light and debris the plasma emits? To answer these questions, this group will model the plasma dynamics on different timescales.

Atomic Plasma Processes

This group looks for fingerprints of atoms and ions generated in the EUV-emitting plasma. The aim is to understand this plasma by understanding its constituents.

Nanophotochemistry

Wafers are covered with a photosensitive called resist so that patterns can be transferred to them from masks. This group focuses on the effects of the interaction between EUV light and the photoresist, a largely unknown territory.

EUV Targets

This group uses ultrafast lasers and spectroscopy to study at every possible timescale the interaction between high-intensity laser light and metals passing through the four phases of matter: solid, liquid, gas and plasma.

Nanolayers

This group studies surfaces, interfaces, and very thin films on the atomic scale. The knowledge it generates is relevant for the delicate optics and other essential components of modern lithography machines.

EUV Photoresists

This group studies the chemical changes that occur within a wide range of photosensitive materials in response to incident EUV light. The aim is to gain fundamental understanding in order  to design and synthesize new classes of materials with superior properties for nanopatterning.

EUV Photoemission

This joint group of ARCNL and AMOLF uses photoelectron spectroscopy – detecting electrons knocked out of a material by incoming photons – to study molecular properties of EUV photoresist materials  and of liquid interfaces.

EUV Plasma Dynamics

This group uses an extensive diagnostic toolset to characterize EUV light emitting plasma at the atomic and molecular level.

EUV Generation & Imaging

This group aims to obtain a fundamental understanding of the physical processes occurring in laser-produced plasmas and to control the emission of radiation and particles. It is also exploring the the possibilities of using EUV light for a new type of ultrahigh-resolution microscope.

Vacatures bij Advanced Research Center for Nanolithography ARCNL