Université de Lorraine

(Postdoc offer) Statistical and Tensor Methods for Spatiotemporal Heterogeneous Data Analysis

2024-12-31 (Europe/Paris)
Baan opslaan

Offer Description

We are offering a postdoc position on the development of statistical and tensor decomposition methods for representation learning of heterogeneous data with application to the analysis neuroimaging data.

Location: The CRAN laboratory (University of Lorraine) at Nancy, France, with visits to the MLSP laboratory (UMBC) in Maryland, USA. The candidate will work with Prof. Sebastian Miron, Dr. Ricardo Borsoi and Prof. David Brie in the CRAN laboratory, Nancy, and with Prof. Tülay Adali at the MLSP laboratory, UMBC, USA.

The starting date is flexible (the position is open until filled).

Description: The analysis of spatiotemporal data is a fundamental problem in multiple domains such as neuroscience, epidemiology, climate science and pollution monitoring. Developing representation learning methods for spatiotemporal data that can effectively and jointly handle data from diverse modalities poses a significant challenge. A particular difficulty is to devise flexible models which are directly interpretable, readily providing insight into the relationships that are learned from the data. The candidate will develop flexible representations learning and data analysis methods specifically designed to handle heterogeneous spatiotemporal data, effectively utilizing both algebraic (matrix and tensor decompositions) and statistical frameworks to generate results that are interpretable and backed by statistical guarantees. The developed methods will be applied to personalized medicine, with the aim to elucidate the interplay between neuroimaging data (e.g., fMRI) and cognitive/socioeconomic factors as well as their temporal evolution.

Candidate profile: Ph.D. degree in signal processing, machine learning or applied mathematics or related fields.

To apply: If interested, please send your application including an academic CV and a motivation letter to sebastian.miron@univ-lorraine.fr, ricardo.borsoi@univ-lorraine.fr, david.brie@univ-lorraine.fr, and adali@umbc.edu.

For further information, please see: https://cran-simul.github.io/assets/jobs/P_postdoc_these_NSF_2024.pdf

Requirements

Research Field

Engineering » Electrical engineering

Education Level

PhD or equivalent

Languages

ENGLISH

Level

Good

Internal Application form(s) needed

Nu solliciteren

Vul het onderstaande formulier in om te solliciteren naar deze positie.
Allowed file types: PDF, DOC, DOCX, TXT, RTF
Allowed file types: PDF, DOC, DOCX, TXT, RTF

*Door te solliciteren naar een baan die vermeld staat op Academic Positions, gaat u akkoord met onze algemene voorwaarden en privacybeleid.

Door het indienen van deze sollicitatie, stemt u ermee in dat wij uw persoonlijke gegevens bewaren voor servicegerelateerde doeleinden. Wij waarderen uw privacy en zullen uw informatie veilig behandelen. Als u wilt dat uw gegevens worden verwijderd, neem dan rechtstreeks contact met ons op.

Informatie over de vacature

Functienaam
(Postdoc offer) Statistical and Tensor Methods for Spatiotemporal Heterogeneous Data Analysis
Locatie
34 Cours Léopold Nancy, Frankrijk
Gepubliceerd
2024-05-06
Uiterste sollicitatiedatum
2024-12-31 23:59 (Europe/Paris)
2024-12-31 23:59 (CET)
Soort functie
Baan opslaan

Over de werkgever

Université de Lorraine promotes innovation through the dialogue of knowledge, taking advantage of the variety and strength of its scientific fields...

De pagina van de werkgever bekijken

Dit vind je misschien ook interessant

...
Deciphering the Gut’s Clues to Our Health University of Turku Leestijd: 5 min
...
Understanding Users to Optimise 3D Experiences Centrum Wiskunde & Informatica (CWI) Leestijd: 5 min
...
Control Systems: The Key to Our Automated Future? Max Planck Institute for Software Systems (MPI-SWS) Leestijd: 5 min
Meer stories