Valitse alueesi

Valitse alue, joka parhaiten vastaa sijaintiasi tai mieltymyksiäsi.

Valitse sivuston kieli

Tämä asetus hallitsee käyttöliittymän kieltä, mukaan lukien painikkeet, valikot ja kaikki sivuston tekstit. Valitse haluamasi kieli parhaan selauskokemuksen saamiseksi.

Valitse kielet työpaikkailmoituksille

Valitse kielet työpaikkailmoituksille, jotka haluat nähdä. Tämä asetus määrittää, mitkä työpaikkailmoitukset näytetään sinulle.

Johannes Kepler University Linz (JKU)

10 Fully Funded PhD Positions in Molecular Transport and Molecular Recognition

2025-05-31 (Europe/Vienna)
Tallenna työpaikka

The FWF-funded doctoral program Molecular Transport and Molecular Recognition at Johannes Kepler University Linz (JKU) and the Kepler University Hospital (KUK) will launch in the 2025 Summer Semester under the coordination of Prof. Peter Pohl. The program brings together experts in biophysics, chemistry, physics, and medicine to investigate the microscopic machinery that governs vital biological processes—how molecules move across membranes, how cells signal, and how these mechanisms are altered by disease or aging.

Doctoral candidates will conduct innovative research ranging from individual molecules to entire organisms. Projects involve the use of advanced microscopy and other high-resolution techniques to uncover molecular functions that are invisible to the naked eye. The program fosters interdisciplinary training and collaborative research between the natural sciences and medicine, preparing the next generation of scientists to address key biomedical questions.

Ideal applicants hold, or are close to completing, an MSc in biophysics, physics, biochemistry, biomedical sciences, pharmacy, biology, chemistry, bioinformatics, biomedical engineering, chemical engineering, or a related discipline. Strong academic achievement, independent and analytical thinking, communication and teamwork skills, and proficiency in English are essential.

  1. Synaptopodin-associated gap junctions in ion dynamics at the AISEngelhardt
    This project investigates the role of synaptopodin at the axon initial segment and its potential link to electrical and ion-based coupling via gap junctions.
  2. Structure and interaction of the intrinsically disordered protein synaptopodinMulder
    The project aims to characterize the structural ensembles and binding interactions of synaptopodin to better understand its functional mechanisms.
  3. Two-pore channels regulate organellar ion homeostasis and anaphylaxisZierler
    The project explores the physiological and structural role of two-pore channels in endolysosomes, with implications for anaphylaxis and organelle ion regulation.
  4. Water flux through narrow membrane channelsPohl
    This project investigates water permeability and coupling to ion movement through narrow channels, particularly aquaporins, using electrophysiology and advanced spectroscopy.
  5. Structure-based simulations of aquaporins and other channel proteinsMüh
    The project uses molecular dynamics simulations to study how aquaporins and other channels regulate water and ion transport.
  6. NanocontainerKlar
    This project develops optically addressable nanocontainers for the targeted release of calcium ions within cells to investigate signaling processes.
  7. Nano-scale cellular structural dynamics and mechanics during senescence and calcificationHinterdorfer
    The project uses high-resolution atomic force microscopy to study structural and mechanical changes in membranes during cell senescence and calcification.
  8. Mechanics at focal adhesions – towards mechanodiagnostics and -therapeuticsBlank
    This project examines how physical forces and local membrane properties at focal adhesions influence cellular signaling and responses to mechanical stimuli.
  9. Physical property of plasma membrane and ion channel activity during senescence of cancer cellsLee
    The project studies how changes in membrane fluidity and lipid composition affect ion channel function and calcium signaling in aging cancer cells.
  10. Membrane phosphate transport mechanisms in vascular calcificationVölkl
    This project investigates how plasma membrane transporters regulate phosphate and calcium homeostasis in vascular smooth muscle cells and their role in calcification.

Ready to explore the molecular mechanisms of life? This is your opportunity to dive in and make a difference.

To help us process applications efficiently and avoid spam, we kindly ask you to attach a document specifying the project you are applying for. Please ensure that the final file in your application is clearly named according to the relevant project code.

For this doc.funds Call, valid project codes are: Project 1-10

We look forward to receiving your application!

Hae tehtävää

Täytä alla oleva lomake hakeaksesi tätä tehtävää.
Sallitut tiedostotyypit: PDF, DOC, DOCX, TXT, RTF
Sallitut tiedostotyypit: PDF, DOC, DOCX, TXT, RTF
Sallitut tiedostotyypit: PDF, DOC, DOCX, TXT, RTF
Sallitut tiedostotyypit: PDF, DOC, DOCX, TXT, RTF
Sallitut tiedostotyypit: PDF, DOC, DOCX, TXT, RTF
Sallitut tiedostotyypit: PDF, DOC, DOCX, TXT, RTF

*Hakemalla työpaikkaa verkoston sivuilla hyväksyt ehdot ja tietosuojakäytäntömme.

Lähettämällä tämän hakemuksen hyväksyt, että säilytämme henkilötietojasi palveluun liittyviä tarkoituksia varten. Arvostamme yksityisyyttäsi ja käsittelemme tietosi turvallisesti. Jos haluat tietojesi poistamisen, ota suoraan yhteyttä meihin.

Lisätietoa työpaikasta

Otsikko
10 Fully Funded PhD Positions in Molecular Transport and Molecular Recognition
Sijainti
Altenberger Straße 69 Linz, Itävalta
Julkaistu
2025-05-02
Viimeinen hakupäivä
2025-05-31 23:59 (Europe/Vienna)
2025-05-31 23:59 (CET)
Työpaikan tyyppi
Tallenna työpaikka