Scegli la tua regione

Seleziona la regione che meglio si adatta alla tua posizione o alle tue preferenze.

Scegli la lingua del sito

Questa impostazione controlla la lingua dell'interfaccia utente, inclusi i pulsanti, i menu e tutto il testo del sito. Seleziona la tua lingua preferita per la migliore esperienza di navigazione.

Scegli le lingue per gli annunci di lavoro

Seleziona le lingue per gli annunci di lavoro che desideri vedere. Questa impostazione determina quali annunci di lavoro ti verranno mostrati.

Johannes Kepler University Linz (JKU)

10 Fully Funded PhD Positions in Molecular Transport and Molecular Recognition

2025-05-31 (Europe/Vienna)
Salva lavoro

The FWF-funded doctoral program Molecular Transport and Molecular Recognition at Johannes Kepler University Linz (JKU) and the Kepler University Hospital (KUK) will launch in the 2025 Summer Semester under the coordination of Prof. Peter Pohl. The program brings together experts in biophysics, chemistry, physics, and medicine to investigate the microscopic machinery that governs vital biological processes—how molecules move across membranes, how cells signal, and how these mechanisms are altered by disease or aging.

Doctoral candidates will conduct innovative research ranging from individual molecules to entire organisms. Projects involve the use of advanced microscopy and other high-resolution techniques to uncover molecular functions that are invisible to the naked eye. The program fosters interdisciplinary training and collaborative research between the natural sciences and medicine, preparing the next generation of scientists to address key biomedical questions.

Ideal applicants hold, or are close to completing, an MSc in biophysics, physics, biochemistry, biomedical sciences, pharmacy, biology, chemistry, bioinformatics, biomedical engineering, chemical engineering, or a related discipline. Strong academic achievement, independent and analytical thinking, communication and teamwork skills, and proficiency in English are essential.

  1. Synaptopodin-associated gap junctions in ion dynamics at the AISEngelhardt
    This project investigates the role of synaptopodin at the axon initial segment and its potential link to electrical and ion-based coupling via gap junctions.
  2. Structure and interaction of the intrinsically disordered protein synaptopodinMulder
    The project aims to characterize the structural ensembles and binding interactions of synaptopodin to better understand its functional mechanisms.
  3. Two-pore channels regulate organellar ion homeostasis and anaphylaxisZierler
    The project explores the physiological and structural role of two-pore channels in endolysosomes, with implications for anaphylaxis and organelle ion regulation.
  4. Water flux through narrow membrane channelsPohl
    This project investigates water permeability and coupling to ion movement through narrow channels, particularly aquaporins, using electrophysiology and advanced spectroscopy.
  5. Structure-based simulations of aquaporins and other channel proteinsMüh
    The project uses molecular dynamics simulations to study how aquaporins and other channels regulate water and ion transport.
  6. NanocontainerKlar
    This project develops optically addressable nanocontainers for the targeted release of calcium ions within cells to investigate signaling processes.
  7. Nano-scale cellular structural dynamics and mechanics during senescence and calcificationHinterdorfer
    The project uses high-resolution atomic force microscopy to study structural and mechanical changes in membranes during cell senescence and calcification.
  8. Mechanics at focal adhesions – towards mechanodiagnostics and -therapeuticsBlank
    This project examines how physical forces and local membrane properties at focal adhesions influence cellular signaling and responses to mechanical stimuli.
  9. Physical property of plasma membrane and ion channel activity during senescence of cancer cellsLee
    The project studies how changes in membrane fluidity and lipid composition affect ion channel function and calcium signaling in aging cancer cells.
  10. Membrane phosphate transport mechanisms in vascular calcificationVölkl
    This project investigates how plasma membrane transporters regulate phosphate and calcium homeostasis in vascular smooth muscle cells and their role in calcification.

Ready to explore the molecular mechanisms of life? This is your opportunity to dive in and make a difference.

To help us process applications efficiently and avoid spam, we kindly ask you to attach a document specifying the project you are applying for. Please ensure that the final file in your application is clearly named according to the relevant project code.

For this doc.funds Call, valid project codes are: Project 1-10

We look forward to receiving your application!

Candidati

Compila il modulo sottostante per candidarti a questa posizione.
Allowed file types: PDF, DOC, DOCX, TXT, RTF
Allowed file types: PDF, DOC, DOCX, TXT, RTF
Allowed file types: PDF, DOC, DOCX, TXT, RTF
Allowed file types: PDF, DOC, DOCX, TXT, RTF
Allowed file types: PDF, DOC, DOCX, TXT, RTF
Allowed file types: PDF, DOC, DOCX, TXT, RTF

*Applicando per un lavoro elencato su Academic Positions, accetti i nostri termini e condizioni e la nostra politica sulla privacy.

Inviando questa candidatura, acconsenti a che conserviamo i tuoi dati personali per scopi legati al servizio. Valorizziamo la tua privacy e gestiremo le tue informazioni in modo sicuro. Se desideri rimuovere i tuoi dati, contattaci direttamente.

Dettagli del lavoro

Titolo
10 Fully Funded PhD Positions in Molecular Transport and Molecular Recognition
Sede
Altenberger Straße 69 Linz, Austria
Pubblicato
2025-05-02
Scadenza candidatura
2025-05-31 23:59 (Europe/Vienna)
2025-05-31 23:59 (CET)
Tipo di lavoro
Salva lavoro

Informazioni sul datore di lavoro

Since its inception in 1966, the JKU has become a successful and innovative center for science, academics and society.

Visita la pagina del datore di lavoro

Questo potrebbe interessarti